Big Data: как применять и анализировать большие данные?
Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.
В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.
Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.
Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.
Методы анализа и хранение данных
В мире современных технологий большие данные превратились в неизбежный элемент, который требует специального подхода. Огромные массивы разнородной информации не могут быть просто сохранены, оставив их лежать мертвым грузом и не используя. Работа с Big Data строится на нескольких этапах. В первую очередь данные должны быть собраны из разных источников. Затем следует процесс обеспечения их хранения, обработки и защиты от потери данных. В настоящее время облачные решения приобретают все большую важность в связи с возникающими особыми требованиями в хранении и обработке данных.
Большие данные непрерывно накапливаются, и наращивание собственной IT-инфраструктуры при всех возможных масштабируемых возможностях не является оптимальным решением. Нагрузки также не всегда предсказуемы, и физические серверы на пиковые моменты могут выйти из строя. Перестраховка же неоправданно увеличивает затраты. Перенос инфраструктуры в облако позволяет отказаться от дорогостоящего оборудования для хранения данных, а также от затрат на его поддержание и обеспечение безопасности. Облачные хранилища позволяют быстро масштабировать и резервировать вычислительные ресурсы и способны вместить большие объемы информации, при этом обеспечивая надежность, отказоустойчивость и гибкую настройку.
Один из основных и заключительных этапов работы с большими данными - это их анализ. Именно благодаря этому этапу Big Data начинает приносить реальную практическую пользу. Анализ позволяет отфильтровать все ненужное и выделить самую важную информацию, которая может быть полезна для бизнеса.
Методы анализа больших данных очень разнообразны, и их описание не входит в рамки одной статьи. Однако, мы можем рассказать об основных методах.
Переработка информации перед анализом
Процесс приведения неоднородных данных к унифицированному виду, заполнения пропущенных значений и удаления избыточной информации. Этап переработки информации перед анализом Big Data, который необходим для правильной подготовки данных к дальнейшему исследованию.
Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.
Нейронные сети
Алгоритмы машинного обучения во многом похожи на работу человеческого мозга. Они осуществляют анализ входных данных и выдают результат в соответствии с определенным алгоритмом. Нейросети, используемые в машинном обучении, могут быть очень умными. Например, они могут распознавать лица на фотографиях или определять недобросовестные транзакции по заданным признакам.
Прогнозирование будущих событий – это важный инструмент в современном бизнесе. С помощью метода прогностического анализа можно предсказать множество различных вещей, таких как поведение клиентов, динамику продаж, финансовые показатели организации, курсы валют, сроки доставки товаров, а также ремонтопригодность оборудования и многое другое.
Основная суть метода заключается в использовании данных из прошлого для прогнозирования будущих событий. Аналитики выявляют параметры, которые в наибольшей степени влияют на результат, и на основе их анализа, делают предположения о том, что может произойти в будущем.
Прогностический анализ применяется в многих сферах бизнеса и стал незаменимым инструментом планирования и принятия решений. Правильно использованный метод позволяет предугадать различные риски и возможности, что создает преимущество в условиях жесткой конкуренции на рынке.
Статистический анализ
Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.
Визуализация данных является неотъемлемой частью их анализа. Она позволяет превратить информацию в понятный и удобный для использования формат, включая графики, диаграммы, карты и гистограммы. Обычно этот этап анализа выполняется в конечной стадии, когда необходимо проиллюстрировать результаты для пользователей.
Для эффективной визуализации используются специальные инструменты Big Data, предназначенные для работы с каждым конкретным методом.
Рост объема информации, с которым мы сталкиваемся каждую секунду, стремительно ускоряется. Так, только за 2020 год пользователи сгенерировали более 60 зеттабайт (60 × 10 21 байт) данных. При этом, по прогнозам, к 2025 году подобный объем информации вырастет втрое. В связи с этим, анализ Big Data является одним из перспективных технологических направлений. Большие данные актуальны для бизнеса, науки и сферы государственного управления. Поэтому крупные компании активно инвестируют в эту область.
Какие свойства данных можно отнести к понятию Big Data?
Big Data - это громадный объем данных, который является характерным атрибутом технологической эры, что мы наблюдаем сегодня. Однако, объем данных - это не единственная характеристика, которой следует обладать, чтобы быть отнесенным к категории Big Data.
Для того, чтобы данные были считались Big Data, необходимо, чтобы они соответствовали трём главным характеристикам, называемым «трем V»: объёму, скорости и разнообразию. Количество данных должно быть огромным и измеряться не терабайтами, а петабайтами и эксабайтами. Данные также должны поступать из разных источников непрерывно и быстро. Информация, относящаяся к Big Data, может быть представлена разнообразными типами данных, такими как текстовые и графические документы, аудио и видеофайлы, а также логи. Некоторые эксперты добавляют два дополнительных критерия, которыми являются достоверность и ценность.
Также для того, чтобы данные имели значение и могли быть использованы бизнесом, они должны быть точными, практически полезными и иметь жизненную способность. В целом, характеристики Big Data существенно отличаются от привычных нам данных, традиционно обрабатываемых в информационных системах.
Зачем использовать Big Data?
Одним из главных преимуществ использования анализа больших данных является возможность оптимизации бизнес-процессов, улучшения логистики, повышения производительности и качества товаров и услуг. Также большие данные позволяют минимизировать риски, совершенствовать предсказание тенденций рынка, понимать поведение клиентов и их потребности, чтобы правильно нацеливаться на целевую аудиторию. Благодаря анализу большого объема данных, производство становится экологичнее и энергоэффективнее. Не только продавцы получают выгоду от использования Big Data, но и покупатели - удобства в использовании сервисов.
Первыми преимущества использования Big Data оценили телекоммуникационные компании, банки и компании ретейла. Сейчас анализ больших данных широко используется не только в торговле, рекламе и индустрии развлечений, но и в сфере безопасности, медицине, сельском хозяйстве, промышленности, энергетике, науке, государственном управлении.
Ниже представлены несколько примеров использования Big Data в разных отраслях деятельности.
Внедрение новых технологий
Технологические компании используют возможности анализа Big Data для создания интеллектуальных продуктов и сервисов, которые способны решать принципиально новые задачи. Одним из примеров таких продуктов является платформа «вычислительной биологии», разработанная в США. Эта платформа предлагает возможность видеть взаимодействие химических веществ с сигнальными рецепторами клеток организма. Благодаря инструментам Big Data, настоящая революция в фармакологии уже не за горами: платформа позволит находить и создавать лекарственные препараты, которые точно попадают в цель.
Анализ больших данных уже используется в медицинских исследованиях для ускорения и повышения точности результатов. На конференции DUMP, которая проходила в Уральском регионе, были представлены данные об использовании Big Data в медицинских исследованиях. Использование новой технологии в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.
В Европе использование анализа больших данных в медицине более распространено. Исследования в этой области показали, что некоторые генетические факторы могут быть связаны с заболеваемостью раком. Была проанализирована информация на 150 000 пациентов, и выявлены факторы риска возникновения заболевания.
Внедрение новых технологий в медицину позволяет значительно повысить эффективность медицинских исследований и медицинской практики в целом.
Изучение поведения клиентов
В настоящее время маркетологи активно используют большие данные для оптимизации эффективности рекламной кампании. Данные анализируются из истории покупок, поиска, посещений и лайков в социальных сетях для определения предпочтений пользователей. Это позволяет предлагать клиентам только самые подходящие предложения, сделав рекламу более адресной и эффективной, благодаря Big Data.
Одним из первооткрывателей в этой области стал известный маркетплейс Amazon. В системе рекомендаций учитывались не только история покупок и анализ поведения клиентов, но и внешние факторы, такие как сезон и предстоящие праздники. В результате система рекомендаций Amazon стала ответственной за более чем треть всех продаж.
Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.
Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.
Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.
В современном мире внедрение новых технологий является необходимым фактором для совершенствования производственных процессов. Одной из самых актуальных технологий на данный момент является Big Data, которая удается помочь предотвратить простои оборудования и снижение производительности. Интеллектуальные системы на основе этой технологии применяются для сбора и анализа данных с приборов мониторинга, средств измерения, логических контроллеров. Обработанные данные позволяют видеть, насколько работоспособно оборудование, предотвращать поломки, выявлять и исключать из процесса неэффективные операции, экономить материалы и потребляемую энергию, как это указано на сайте https://controleng.ru/.
Аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу по управлению предприятием, основанную на применении больших данных. Она стала ключевым элементом автоматизации работы семидесяти служб компании и позволила сделать управление аэропортом более прозрачным и эффективным. Особенностью платформы является возможность получения оперативной и полной информации по любому текущему процессу, что повышает качество работы предприятия. Плюсом является то, что внедрение платформы упрощает сотрудничество аэропорта с авиакомпаниями и оптимизирует планирование ресурсов, включая их техобслуживание и ремонт терминалов. Согласно прогнозам из АНО «Радиочастотный спектр», использование такого «умного сервиса» может улучшить техническое состояние оборудования и обеспечить оборачиваемость запасов на 10%, а уровень сервиса по поставкам — на 20%. Информация была размещена на сайте https://rspectr.com/.
Большие данные – это мощный инструмент, который позволяет строить модели, выявлять закономерности и прогнозировать изменения в поведении людей и процессов. Одной из областей, в которых применяется прогнозная аналитика на основе Big Data, является реклама. Она помогает планировать успешные маркетинговые кампании, предугадывая потребительский спрос на товары и услуги и совершенствуя взаимодействие с клиентами.
Прогнозные модели на основе больших данных также нашли применение в различных областях, включая образование. Так, их используют для расчета будущей успеваемости учеников и эффективности программ.
Кроме того, прогнозная аналитика на основе Big Data уже широко применяется в авиации. Например, в компании Airbus рассчитывают, что к 2025 году, благодаря предиктивному обслуживанию, удастся снизить количество отказов самолетов из-за выявленных неисправностей. Компания Lufthansa Technik уже внедрила платформу, которая прогнозирует сроки замены деталей. Операции, проводимые на основе прогнозной аналитики на основе больших данных, помогают совершенствовать различные отрасли, делая их более эффективными и конкурентоспособными.
Консалтинговая компания Accenture провела исследование в 2014 году, в рамках которого руководители тысячи компаний из разных стран мира были опрошены. Больше половины (60%) из опрошенных компаний на тот момент успешно внедрили системы анализа больших данных и были довольны полученными результатами. Участники исследования назвали несколько преимуществ использования Big Data, включая создание новых продуктов и услуг, увеличение и разнообразие источников доходов, повышение уровня удовлетворенности клиентов и улучшение клиентского опыта. Источник - https://www.tadviser.ru/.
Фото: freepik.com